Hedgehog Signaling Overcomes an EZH2-Dependent Epigenetic Barrier to Promote Cholangiocyte Expansion
نویسندگان
چکیده
BACKGROUND & AIMS Developmental morphogens play an important role in coordinating the ductular reaction and portal fibrosis occurring in the setting of cholangiopathies. However, little is known about how membrane signaling events in ductular reactive cells (DRCs) are transduced into nuclear transcriptional changes to drive cholangiocyte maturation and matrix deposition. Therefore, the aim of this study was to investigate potential mechanistic links between cell signaling events and epigenetic regulators in DRCs. METHODS Using directed differentiation of induced pluripotent stem cells (iPSC), isolated DRCs, and in vivo models, we examine the mechanisms whereby sonic hedgehog (Shh) overcomes an epigenetic barrier in biliary precursors and promotes both cholangiocyte maturation and deposition of fibronectin (FN). RESULTS We demonstrate, for the first time, that Gli1 influences the differentiation state and fibrogenic capacity of iPSC-derived hepatic progenitors and isolated DRCs. We outline a novel pathway wherein Shh-mediated Gli1 binding in key cholangiocyte gene promoters overcomes an epigenetic barrier conferred by the polycomb protein, enhancer of zeste homolog 2 (EZH2) and initiates the transcriptional program of cholangiocyte maturation. We also define previously unknown functional Gli1 binding sites in the promoters of cytokeratin (CK)7, CK19, and FN. Our in vivo results show that EZH2 KO mice fed the choline-deficient, ethanolamine supplemented (CDE) diet have an exaggerated cholangiocyte expansion associated with more robust ductular reaction and increased peri-portal fibrosis. CONCLUSION We conclude that Shh/Gli1 signaling plays an integral role in cholangiocyte maturation in vitro by overcoming an EZH2-dependent epigenetic barrier and this mechanism also promotes biliary expansion in vivo.
منابع مشابه
The role of the desert hedgehog signaling pathway during degeneration and regeneration of peripheral nerves
The desert hedgehog (Dhh) signaling pathway is involved in the development of peripheral nerves (PNs). Dhh-null mice show abnormal neuronal development and perineurial barrier function. As it was previously shown that dhh is mainly expressed in developmental nerves and Sonic hedgehog protein (dhh homologous) has therapeutic effects in neuronal survival, we attempted to investigate the possible ...
متن کاملThe role of the desert hedgehog signaling pathway during degeneration and regeneration of peripheral nerves
The desert hedgehog (Dhh) signaling pathway is involved in the development of peripheral nerves (PNs). Dhh-null mice show abnormal neuronal development and perineurial barrier function. As it was previously shown that dhh is mainly expressed in developmental nerves and Sonic hedgehog protein (dhh homologous) has therapeutic effects in neuronal survival, we attempted to investigate the possible ...
متن کاملEZH2-mediated repression of GSK-3β and TP53 promotes Wnt/β-catenin signaling-dependent cell expansion in cervical carcinoma
Enhancer of zeste homolog 2 (EZH2), a catalytic core component of the Polycomb repressive complex 2 (PRC2), stimulates the silencing of target genes through histone H3 lysine 27 trimethylation (H3K27me3). Recent findings have indicated EZH2 is involved in the development and progression of various human cancers. However, the exact mechanism of EZH2 in the promotion of cervical cancer is largely...
متن کاملI-19: Identifying and Overcoming an Epigenetic Barrier for SCNT Reprogramming
Background Despite successful cloning of many mammalian species, the cloning efficiency is extremely low compared to that of IVF raising the possibility of the existence of epigenetic barrier preventing successful cloning. MaterialsAndMethods Using comparative transcriptome analysis comparing transcriptomes of IVF and SCNT embryos and that of donor cells, we identified epigenetic barrier and fi...
متن کاملEZH2-Mediated H3K27me3 Is Involved in Epigenetic Repression of Deleted in Liver Cancer 1 in Human Cancers
Enhancer of zeste homolog 2 (EZH2), the histone methyltransferase of the Polycomb Repressive complex 2 catalyzing histone H3 lysine 27 tri-methylation (H3K27me3), is frequently up-regulated in human cancers. In this study, we identified the tumor suppressor Deleted in liver cancer 1 (DLC1) as a target of repression by EZH2-mediated H3K27me3. DLC1 is a GTPase-activating protein for Rho family pr...
متن کامل